Taming the Computational Complexity of Combinatorial Auctions

Kevin Leyton-Brown Yoav Shoham

Overview

1. Problem Statement

- 2. CASS
- 3. Experimental Results
- 4. Conclusions

Combinatorial Auctions

- # Agents often desire goods more in combination with other goods than separately
 - ☑ Example: two pieces of adjacent property
- Combinatorial Auctions: mechanisms that allow agents to explicitly indicate complementarities
 - △ Multiple goods are auctioned simultaneously
 - △ Bidders place as many bids as they want
 - Each bid may claim any number of goods
- **#** Agents assume less risk than in sequential auctions
 - △ The auctioneer can hope to achieve higher revenues and/or greater social welfare

Problem Statement

Betermine the winners of a combinatorial auction

- Given a set of bids on bundles of goods, find a subset containing non-conflicting bids that maximizes revenue
- △ This procedure can be used as a building block for more complex combinatorial auction mechanisms

⊠e.g., the Generalized Vickrey Auction mechanism

- Hortunately, even this building block is an NP-complete problem
- Finding optimal allocations remains desirable
 properties like truth revelation may not hold with approximation
 problems up to a certain size will be tractable

Substitutability

- Sometimes bidders will pay *less* for combinations of goods than the sum of what they would pay for each good individually
 e.g., copies of the same book
- **H** A bidder submits: $(\$20, \{g\})$; $(\$20, \{h\})$; $(\$30, \{g,h\})$
 - \bigtriangleup {g} and {h} would be the winning bids: the bidder would be charged \$40 instead of \$30

H Dummy goods:

- The bidder submits: (\$20, $\{g,d\}$), (\$20, $\{h,d\}$), and (\$30, $\{g,h\}$) where d is a new, unique dummy good
- △ The first two bids now name the same good and so will never be allocated together

- 1. Problem Statement
- 2. CASS
- 3. Experimental Results
- 4. Conclusions

CASS: Introduction

- **K** CASS Combinatorial Auction Structured Search
- **CASS** considers fewer partial allocations than a naïve DFS:
 - structure the search space: consider fewer conflicting bids
 - pruning: use context from the search structure to generate close overestimates of total revenue
 - ordering heuristics: capitalize on this structure to speed searching and improve anytime performance
- **#** CASS has low memory demands
 - only stores nodes that are part of current allocation (# goods)
 - △ most memory is used for pruning tables
 - average 10-20 MB used for problems discussed today
- ℜ Originally we proposed two algorithms, now CASS is always faster

Naïve Depth-First Search

bids are tuples: (a binary set of goods, a price)

- % nodes are partial allocations (sums of bids)
- start node: empty set (no goods, \$0)

% transitions between nodes: add one bid to the partial allocation

only add non-conflicting bids (bids whose intersection with the current partial allocation is empty)

terminal node: no non-conflicting bids exist

the terminal node with the highest revenue is the optimal allocation

CASS Improvement #1: Preprocessing

- 1. Remove dominated bids
 - If there exist bids $b_k = (p_k, G_k)$ and $b_l = (p_k, G_l)$ such that $p_l \ge p_k$ and $G_l \subseteq G_{k'}$ then remove b_k

☑ Two bids for the same bundle of goods with different prices

- ☑ One bundle is a a strict subset of another and has a higher price
- 2. For each good g, if there is no bid $b=(x, \{g\})$, add a dummy bid $b=(0, \{g\})$
 - △ This ensures that the optimal set of bids will name every good, even if some goods are not actually allocated

CASS Improvement #2: Bins

Structure the search space to reduce the number of infeasible allocations that are considered

△ Partition bids into bins, $D_{i'}$ containing all bids *b* where good $i \in G_b$ and for all $j < i, j \notin G_b$

△ Add only one bid from each bin

CASS Improvement #3: Skipping Bins

℅ When considering bin D_i, if good j > i is already part of the allocation then do not consider any of the bids in D_j All the bids in D_j are guaranteed to conflict with our allocation

H In general, instead of considering each bin in turn, skip to D_k where $k \notin G(F)$ and $\forall i < k, I \in G(F)$

CASS Improvement #4: Pruning

- Backtrack when it is impossible to add bids to the current allocation to achieve more revenue than the current best allocation
- **\mathbb{H}** Revenue overestimate function o(g, i, F)
 - An overestimate of the revenue that can be achieved with good g, searching from bin i with current partial allocation Fan admissible heuristic
 - \square precompute lists for all *g*, *i*:

 \boxtimes all bids that contain good g and appear in bin *i* or beyond \boxtimes sorted in descending order of average price per bid (APPB)

 $rac{1}{2}$ return APPB of the first bid in the list that doesn't conflict with F

Solution Backtrack at any point during the search if *revenue*(F) + $\sum_{g \notin F} o(g, i, F) \leq revenue(best_allocation)$

CASS Improvement #5: Good Ordering Heuristic

Good ordering: what good will be numbered #1, #2...

Goal: reduce branching factor at the top of the tree

- pruning will often occur before bins with a higher branching factor are reached
- **#** Ordering of goods:

Sort goods in ascending order of score,

 $score(g) := \frac{number of \ bids \ containing \ g}{average \ length \ of \ bids \ containing \ g}$

 \bigtriangleup more bids \rightarrow more branching \boxdot longer bids \rightarrow shallower search

CASS Improvement #6: Bid Ordering Heuristic

Finding good allocations quickly:

- 1. Makes pruning more effective
- 2. Is useful if anytime performance is important
- **Crdering of bids in each bin:**
 - Sort bids in descending order of average price per good
 - More promising bids will be encountered earlier in the search

- 1. Problem Statement
- 2. CASS

3. Experimental Results

4. Conclusions

Experimental Results: Data Distributions

Here is little or no real data available, so we drew bids randomly from specific distributions

Binomial:
$$f_b(n) = \frac{p^n (1-p)^{N-n} N!}{n! (N-n)!}, p = 0.2$$

△ The probability of each good being included in a given bid is independent of which other goods are included

Experimental Results: Data Distributions

 Binomial is fairly easy to analyze, but not very realistic
 Model in a real auction, we expect mostly short bids
 Model in an allocation

Exponential: $f_e(n) = Ce^{x/p}, p = 5$

△ a bid for n+1 goods appears $e^{-1/p}$ times less often than a bid for n goods.

Experimental Results: Data Distributions

Beruing is done on the basis of price
 ■
 Distribution of prices is also very important
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □

- **H** Prices of bids for *n* goods is uniformly distributed between [n(1-d), n(1+d)], d = 0.5
 - prices cluster around a "natural" average price per bid, and deviate by a random amount
 - ☐ if prices were completely random, the pruning algorithm would have more of an advantage

Experimental Results: Running Time (Binomial)

CASS Performance: Runtime vs. Number of Bids

Running time (median over 20 runs, seconds)

Experimental Results: Running Time (Exp.)

CASS Performance: Runtime vs. Number of Bids

Experimental Results: Running Time (Exp.)

CASS Performance: Runtime vs. Number of Bids

Experimental Results: Anytime Performance (Exp)

CASS Percentage Optimality: Elapsed Time vs. Number of Bids

Sandholm's BidTree Algorithm

Presents results for four different distributions:

Random Distribution:

Select the number of goods, N, in a given bid (uniform random)

 \square Uniquely choose the goods

≥Price: uniform random between [0, 1]

☑ Weighted Random Distribution:

⊠Same as above, but price is [0, N]

Uniform Distribution

⊠All bids have same length (3 goods in this case)

≥ Price: uniform random between [0, 1]

△ Decay Distribution

☑A given bid starts with one random good

 \boxtimes Keep adding random unique goods with probability α

≥Price: uniform random between [0, N]

Experimental Results: Random Distribution

CASS vs BidTree Performance: Runtime vs. Number of Bids

Running time (average over 20 runs, seconds)

Experimental Results: Weighted Random Distribution

CASS vs BidTree Performance: Runtime vs. Number of Bids

Running time (average over 20 runs, seconds)

Experimental Results: Uniform Distribution

CASS vs BidTree Performance: Runtime vs. Number of Bids

Running time (average over 20 runs, seconds)

Experimental Results: Decay Distribution

CASS vs BidTree Performance: Runtime vs. Number of Bids

Overview

- 1. Problem Statement
- 2. CASS
- 3. Experimental Results
- 4. Conclusions

Conclusions

We have proposed an algorithm to mitigate the computational complexity of combinatorial auctions, which works surprisingly well on simulated data

 determines optimal allocations in a small fraction of the time taken by a naïve DFS approach to solve the same problem
 can find good approximate solutions quickly

Future Work

Investigate the effects of different bin orderings and orderings of bids within bins

Compare to other search techniques

☐ integer programming

- ☐ other combinatorial auction search techniques
- **#** Experiments with real data (FCC auctions?)
- **#** Caching: referenced in our paper, but currently disabled
- Bivisible/identical goods
 - some of our work on CASS is relevant to the new problem; much is not