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Combinatorial Auctions

a Agents often desire goods more in combination with other goods 
than separately
` Example: two pieces of adjacent property

a Combinatorial Auctions: mechanisms that allow agents to explicitly 
indicate complementarities
`Multiple goods are auctioned simultaneously 
` Bidders place as many bids as they want
` Each bid may claim any number of goods

a Agents assume less risk than in sequential auctions
` The auctioneer can hope to achieve higher revenues and/or greater 

social welfare



Problem Statement

a Determine the winners of a combinatorial auction
`Given a set of bids on bundles of goods, find a subset 

containing non-conflicting bids that maximizes revenue
`This procedure can be used as a building block for more 

complex combinatorial auction mechanisms 
⌧e.g., the Generalized Vickrey Auction mechanism

a Unfortunately, even this building block is an 
NP-complete problem

a Finding optimal allocations remains desirable 
`properties like truth revelation may not hold with approximation
`problems up to a certain size will be tractable



Substitutability

a Sometimes bidders will pay less for combinations of goods than the 
sum of what they would pay for each good individually
` e.g., copies of the same book

a A bidder submits: ($20,{g}); ($20,{h}); ($30,{g,h})
`{g} and {h} would be the winning bids: the bidder would be charged 

$40 instead of $30
a Dummy goods:

` The bidder submits: ($20, {g,d}), ($20, {h,d}), and ($30, {g,h}) where 
d is a new, unique dummy good

` The first two bids now name the same good and so will never be 
allocated together
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CASS: Introduction

a CASS – Combinatorial Auction Structured Search
a CASS considers fewer partial allocations than a naïve DFS:

` structure the search space: consider fewer conflicting bids
` pruning: use context from the search structure to generate close 

overestimates of total revenue
` ordering heuristics: capitalize on this structure to speed searching 

and  improve anytime performance
a CASS has low memory demands

` only stores nodes that are part of current allocation (# goods)
`most memory is used for pruning tables
` average 10-20 MB used for problems discussed today

a Originally we proposed two algorithms, now CASS is always faster



Naïve Depth-First Search

a bids are tuples: (a binary set of goods, a price)
a nodes are partial allocations (sums of bids)
a start node: empty set (no goods, $0)
a transitions between nodes: add one bid to the partial 

allocation
`only add non-conflicting bids (bids whose intersection with the 

current partial allocation is empty)

a terminal node: no non-conflicting bids exist
`the terminal node with the highest revenue is the optimal 

allocation



CASS Improvement #1: 
Preprocessing

1. Remove dominated bids 
` If there exist bids bk= (pk,Gk) and bl= (pl,Gl) such that pl ≥ pk

and Gl ⊆ Gk, then remove bk
⌧ Two bids for the same bundle of goods with different prices
⌧ One bundle is a a strict subset of another and has a higher price

2. For each good g, if there is no bid b=(x,{g}), 
add a dummy bid b=(0,{g})
` This ensures that the optimal set of bids will name every good, 

even if some goods are not actually allocated



CASS Improvement #2: 
Bins

a Structure the search space to reduce the number of 
infeasible allocations that are considered 
`Partition bids into bins, Di, containing all bids b where 

good i ∈ Gb and for all j < i, j ∉ Gb

`Add only one bid from each bin
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CASS Improvement #3: 
Skipping Bins

aWhen considering bin Di, if good j > i is already part of 
the allocation then do not consider any of the bids in Dj

`All the bids in Dj are guaranteed to conflict with our allocation

a In general, instead of considering each bin in turn, skip 
to Dk where k ∉ G(F) and ∀i<k, I ∈ G(F)
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CASS Improvement #4: 
Pruning

a Backtrack when it is impossible to add bids to the 
current allocation to achieve more revenue than the 
current best allocation

a Revenue overestimate function o(g,i,F)
`an overestimate of the revenue that can be achieved with good 

g, searching from bin i with current partial allocation F
⌧an admissible heuristic

`precompute lists for all g, i:
⌧all bids that contain good g and appear in bin i or beyond
⌧sorted in descending order of average price per bid (APPB)

`return APPB of the first bid in the list that doesn’t conflict with F
a Backtrack at any point during the search if 

revenue(F) +              ≤ revenue(best_allocation)∑
∉Fg

Figo ),,(



CASS Improvement #5: 
Good Ordering Heuristic

a Good ordering: what good will be numbered #1, #2…
a Goal: reduce branching factor at the top of the tree

`pruning will often occur before bins with a higher branching 
factor are reached

a Ordering of goods:
`Sort goods in ascending order of score,

`more bids Æ more branching
`longer bids Æ shallower search

gcontainingbidsoflengthaverage
gcontainingbidsofnumbergscore =:)(



CASS Improvement #6: 
Bid Ordering Heuristic

a Finding good allocations quickly:
1. Makes pruning more effective
2. Is useful if anytime performance is important

a Ordering of bids in each bin:
` Sort bids in descending order of average price per good
` More promising bids will be encountered earlier in the search
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Experimental Results: 
Data Distributions
a There is little or no real data available, so we drew bids 

randomly from specific distributions

a Binomial:

`The probability of each good being included in a given bid is 
independent of which other goods are included
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Experimental Results: 
Data Distributions

a Binomial is fairly easy to analyze, but not very realistic
`in a real auction, we expect mostly short bids
`harder Æ more bids must be combined in an allocation

a Exponential: fe(n) = Ce-x/p, p = 5
`a bid for n+1 goods appears e-1/p times less often than a bid for

n goods.
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Experimental Results: 
Data Distributions

a Distribution of prices is also very important
`pruning is done on the basis of price

a Prices of bids for n goods is uniformly distributed 
between [n(1-d), n(1+d)], d = 0.5
`prices cluster around a “natural” average price per bid, and 

deviate by a random amount
`if prices were completely random, the pruning algorithm would 

have more of an advantage



Experimental Results:
Running Time (Binomial)

CASS Performance:  Runtime vs. Number of Bids
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Experimental Results:
Running Time (Exp.)

CASS Performance:  Runtime vs. Number of Bids
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Experimental Results:
Running Time (Exp.)

CASS Performance:  Runtime vs. Number of Bids
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Experimental Results:
Anytime Performance (Exp)

CASS Percentage Optimality:  Elapsed Time vs. Number of Bids
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Sandholm’s BidTree
Algorithm

a Presents results for four different distributions:
`Random Distribution:

⌧Select the number of goods, N, in a given bid (uniform random)
⌧Uniquely choose the goods
⌧Price: uniform random between [0, 1]

`Weighted Random Distribution:
⌧Same as above, but price is [0, N]

`Uniform Distribution
⌧All bids have same length (3 goods in this case)
⌧Price: uniform random between [0, 1]

`Decay Distribution
⌧A given bid starts with one random good
⌧Keep adding random unique goods with probability α
⌧Price: uniform random between [0, N]



Experimental Results:
Random Distribution

CASS vs BidTree Performance:  Runtime vs. Number of Bids
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Experimental Results:
Weighted Random Distribution

CASS vs BidTree Performance:  Runtime vs. Number of Bids
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Experimental Results:
Uniform Distribution

CASS vs BidTree Performance:  Runtime vs. Number of Bids
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Experimental Results:
Decay Distribution

CASS vs BidTree Performance:  Runtime vs. Number of Bids
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Conclusions

aWe have proposed an algorithm to mitigate the 
computational complexity of combinatorial auctions, 
which works surprisingly well on simulated data
`determines optimal allocations in a small fraction of the time 

taken by a naïve DFS approach to solve the same problem
`can find good approximate solutions quickly



Future Work

a Investigate the effects of different bin orderings and 
orderings of bids within bins

a Compare to other search techniques
`integer programming
`other combinatorial auction search techniques

a Experiments with real data (FCC auctions?)
a Caching: referenced in our paper, but currently disabled
a Divisible/identical goods

`some of our work on CASS is relevant to the new problem; 
much is not
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